Где припарковаться в космосе или что такое точки Лагранжа?
65 17/08/2020
Согласно известному анекдоту (который, говорят, придумал Вольтер) Исаак Ньютон открыл закон всемирного тяготения, заметив яблоко, упавшее с ветки дерева, под которым он отдыхал. Скорее всего, это – легенда, ставшая мемом настолько, что имя гениального учёного до сих пор ассоциируется у нас, в первую очередь, с яблоком. Даже разработчики компьютера Apple поместили на самый первый логотип Ньютона с его яблоком.
Но из числа тех, кто охотно вспоминает про яблоко Ньютона, пожалуй, никто не задумывается, в чём же величие сформулированного им закона.
Спасибо за открытие, сэр Исаак!
Дело в том, что до Ньютона астрономия была наукой чисто описательной. Результаты множества наблюдений были сведены в таблицы, благодаря которым, можно было определить положение на небосводе любого небесного объекта, звезды или планеты, в любое время. Эти таблицы были необходимейшим справочником не только для астрономов, но и для мореплавателей-навигаторов.
И вот Ньютон открыл гравитацию, силу взаимодействия двух масс, находящихся на любом расстоянии друг от друга. А согласно второму из трёх законов механики, сформулированных тем же Ньютоном, если сила, действующая на объект известна, можно без труда определить траекторию движения этого объекта. Так возникла небесная механика, которая позволила вычислять положение звёзд и планет, предвосхищая результаты наблюдений. Астрономия стала наукой предсказательной! Наблюдатель мог в нужное время направить свой телескоп в нужное место небосвода и – voila! – вот вам астрономическое открытие. Именно так Уильям Гершель открыл неизвестную до той поры планету, которую после длительных споров астрономы назвали Ураном.
Скажем больше, без законов, открытых Ньютоном, не было бы современной космонавтики. Всего за сто пятьдесят лет, прошедших после Ньютона, астрономы получили возможность рассчитать положение любых небесных объектов, в том числе, искусственных. Великие корифеи, создавшие математический аппарат небесной механики, Гаусс, Лаплас, Эйлер, Лагранж, даже не предполагали, что с помощью этого аппарата их потомки станут рассчитывать полёты космических кораблей к ближним и дальним планетам. А вот то, что физика и математика изгнали из астрономии Творца Вселенной, чья воля, согласно словам Данте «движет солнце и светила», им всем стало ясно.
Чьи они?
Имя выдающегося французского математика Жозефа-Луи Лагранжа (Joseph Louis Lagrange; 1736 — 1813) знакомо не понаслышке всем, кому довелось учить высшую математику. Ещё бы, этим именем названы множество теорем и формул в самых разнообразных математических отраслях. Красивое слово лагранжиан, название общей функции, описывающей состояние и развитие во времени механической системы, встречается уже на первых страницах «Курса теоретической физики» Л. Ландау и Е. Лифшица, священной книги физиков-теоретиков. А доведенная до полного совершенства лагранжева классическая механика позволяет рассчитывать движение любого тела под воздействием любой силы. Было бы время, да подходящий счётный прибор!
Лагранж, что называется, на кончике пера открыл особенные точки межпланетного пространства, которые назвали его именем. Конечно же великий учёный не представлял, что точки эти станут предметом практической космонавтики и в этом качестве принесут огромную пользу как космической навигации, так и практической астрономии.
Что это такое?
В 1772 году Лагранж решил важную математическую задачу, которая называется проблемой движения трёх тел под воздействием сил взаимного притяжения. В общем виде эта задача не решена до сих пор, но Лагранж представил красивое решение для случая, когда два тела имеют очень большую массу, а третье – массу очень маленькую. Современный пример напрашивается сам собой: Солнце, Земля и космический корабль. Все три массы взаимодействуют друг с другом и это взаимодействие определяет взаимное движение этих трёх тел.
Лагранж определил, что в пространстве имеется несколько точек, в которых гравитационное притяжение двух больших масс окажется равным центростремительной силе движения третьего, небольшого объекта. Такие своеобразные точки межпланетного равновесия были названы точками Лагранжа. Если объект попадёт в точку Лагранжа, он сможет двигаться под воздействием двух больших масс, не затрачивая на это собственной энергии.
Сколько их и где они?
Всего точек Лагранжа пять. Если рассмотреть систему Земля-Солнце, то первая точка, которую обозначают L1, будет находиться между Землей и Солнцем, и от Земли её будет отделять около 1.5 миллиона километров. Вторая точка Лагранжа L2 тоже находится от Земли на расстоянии в полтора миллиона километров, но в противоположном направлении от Солнца.
Много это или мало, полтора миллиона километров? Для сравнения: расстояние от Земли до Луны – 384.4 тысячи километров, расстояние от Земли до Венеры – 108 миллионов километров, а расстояние от Земли до Солнца – 149,5 миллиона километров. Значит, обе точки Лагранжа, находятся от Земли очень далеко, за лунной орбитой.
Третья точка Лагранжа, L3, находится ещё дальше, приблизительно на противоположной стороне орбиты Земли, за Солнцем.
Равновесие, в котором находится тело с малой массой в точках L1, L2 и L3 – неустойчивое и напоминает равновесие тележки на вершине холма. Достаточно небольшого смещения малого тела, чтобы оно начало необратимое движение к телу бóльшей массы. Чтобы оставаться в неустойчивых точках Лагранжа космическому кораблю регулярно придётся ненадолго включать двигатели, корректируя своё положение и ориентацию.
Ещё две точки Лагранжа, обозначаемые, как L4 и L5, находятся на орбите Земли на равном расстоянии от центров Земли и Солнца, так что все три тела, два больших и одно очень маленькое, размещаются в вершинах равностороннего треугольников. Земля и Солнце из этих точек будут видны под углом 60 градусов. А всего таких равносторонних треугольников два.
В отличие от трёх предыдущих точек Лагранжа, точки L4 и L5 – устойчивые. При небольшом смещении малого тела, оно будет возвращаться в ту же точку равновесия. А если в четвёртую или пятую точку Лагранжа залетает какой-нибудь не слишком быстрый предмет, его судьба – остаться там навсегда. Впервые такие небесные объекты были обнаружены астрономами в системе Солнце – Юпитер в точках L4 и L5. Здесь были обнаружены три крупных астероида и множество мелких. Крупные астероиды назвали именами героев «Иллиады»: Агамемнон, Ахиллес и Гектор. В точке L4 астероиды решили называть в честь греков, штурмовавших Трою, а в L5 — в честь защитников Трои. Астрономы не только знания, но и культуру свою показать желают! Есть, однако, два исключения: астероид Патрокл находится в лагере троянцев, а Гектор — в лагере греков.
Впоследствии оказалось, что в Солнечной системе есть сотни троянских астероидов. Большинство из них сосредоточены в точках L4 и L5 на орбитах вокруг Юпитера, Марса и спутников Сатурна. В 2010 году троянский астероид обнаружен в точке L4 Земли.
Помощь небес
Точки Лагранжа – идеальные места для парковки космических лабораторий. Ведь космические корабли, размещённые здесь, движутся под воздействием сил тяготения Земли и Солнца, а значит сами топлива не потребляют или потребляют его совсем немного.
В точку L1 выгодно размещать космические обсерватории, которые наблюдают за Солнцем. Обзор Солнца постоянен, до Земли относительно недалеко, что является гарантией хорошей связи. А вот в системе Земля – Луна первая точка Лагранжа L1, удаленная от центра Земли примерно на 315 тысяч километров, может стать местом размещения пилотируемой орбитальной космической станции, своеобразного причала для кораблей, летящих по траектории Земля – Луна и обратно. Существование такого «причала» могло бы сделать лунные рейсы более дешёвыми за счёт экономии топлива.
В системе Земля—Луна точка L2 находится в 61.5 тысячах километров от поверхности Луны. В 2018 году китайцы «подвесили» в этой точке космический ретранслятор, который обеспечивал командному пункту на Земле связь с луноходом, работавшим на той стороне Луны, которая не видна с Земли.
Но возвратимся в систему Земля – Солнце. Здесь вторая точка Лагранжа, L2, отдалена от Земли на 1.5 миллиона километров в сторону, противоположную Солнцу. Отсюда хорошая радиосвязь с Землёй, а свет Солнца, Земли и Луны не будет мешать наблюдениям. Значит, здесь – самое лучшее место для того, чтобы разместить космический телескоп, который вёл бы наблюдение за звёздами. И на самом деле, эта точка не пустует, здесь всегда находились и находятся космические лаборатории, наблюдающие за звёздами. С сентября 2009 по 23 октября 2013 года здесь работал радиотелескоп «Планк» и вместе с ним с сентября 2009 по 17 июня 2013 года – инфракрасный космический телескоп «Гершель». 18 декабря 2021 года в точку L2 будет запущен новый космический телескоп «Джеймс Уэбб», который, как надеются астрономы, заменит знаменитый прославленный космический телескоп «Хаббл»
Точку Лагранжа L3 астрономы вряд ли будут использовать в ближайшее время. Слишком уж далека она от Земли и к тому же всё время закрыта Солнцем. Зато фантасты успешно эксплуатируют эту точку. Они помещали туда и скрытую планету «противо-Землю», и корабли пришельцев, и даже космические свалки.